Digital Image Processing

Colour Image Processing

Introduction

Today we'll look at colour image processing, covering:

- Colour fundamentals
- Colour models

Colour Fundamentals

In 1666 Sir Isaac Newton discovered that when a beam of sunlight passes through a glass prism, the emerging beam is split into a spectrum of colours

Colour Fundamentals (cont...)

The colours that humans and most animals perceive in an object are determined by the nature of the light reflected from the object For example, green objects reflect light with wave lengths primarily in the range of $500-570 \mathrm{~nm}$ while absorbing most of the energy at other wavelengths

Colour Fundamentals (cont...)

Chromatic light spans the electromagnetic spectrum from approximately 400 to 700 nm
As we mentioned before human colour vision is achieved through 6 to 7 million cones in each eye

Colour Fundamentals (cont...)

Approximately 66\% of these cones are sensitive to red light, 33\% to green light and 6\% to blue light
Absorption curves for the different cones have been determined experimentally
Strangely these do not match the CIE standards for red (700nm), green (546.1 nm) and blue (435.8nm) light as the standards were developed before the experiments!

Colour Fundamentals (cont...)

Colour Fundamentals (cont...)

3 basic qualities are used to describe the quality of a chromatic light source:

- Radiance: the total amount of energy that flows from the light source (measured in watts)
- Luminance: the amount of energy an observer perceives from the light source (measured in lumens)
- Note we can have high radiance, but low luminance
- Brightness: a subjective (practically unmeasurable) notion that embodies the intensity of light
We'll return to these later on

CIE Chromacity Diagram

Specifying colours systematically can be achieved using the CIE chromacity diagram
On this diagram the x-axis represents the proportion of red and the y-axis represents the proportion of red used
The proportion of blue used in a colour is calculated as:

$$
z=1-(x+y)
$$

CIE Chromacity Diagram (cont...)

(C.I.E. CHROMATICITY DIAGRAM)

Green: 62\% green, 25\% red and 13\% blue

Red: 32\% green, 67\% red and 1\% blue

CIE Chromacity Diagram (cont...)

Any colour located on the boundary of the chromacity chart is fully saturated
The point of equal energy has equal amounts of each colour and is the CIE standard for pure white
Any straight line joining two points in the diagram defines all of the different colours that can be obtained by combining these two colours additively
This can be easily extended to three points

CIE Chromacity Diagram (cont...)

This means the entire colour range cannot be displayed based on any three colours
The triangle shows the typical colour gamut produced by RGB monitors

The strange shape is the gamut achieved by high quality colour printers

Colour Models

From the previous discussion it should be obvious that there are different ways to model colour

We will consider two very popular models used in colour image processing:

- RGB (Red Green Blue)
- HIS (Hue Saturation Intensity)

In the RGB model each colour appears in its primary spectral components of red, green and blue

The model is based on a Cartesian coordinate system

- RGB values are at 3 corners
- Cyan magenta and yellow are at three other corners
- Black is at the origin
- White is the corner furthest from the origin
- Different colours are points on or inside the cube represented by RGB vectors

RGB (cont...)

Images represented in the RGB colour model consist of three component images - one for each primary colour
When fed into a monitor these images are combined to create a composite colour image
The number of bits used to represent each pixel is referred to as the colour depth
A 24-bit image is often referred to as a fullcolour image as it allows $\left(2^{8}\right)^{3}=16,777,216$ colours

RGB (cont...)

The HSI Colour Model

RGB is useful for hardware implementations and is serendipitously related to the way in which the human visual system works
However, RGB is not a particularly intuitive way in which to describe colours
Rather when people describe colours they tend to use hue, saturation and brightness RGB is great for colour generation, but HSI is great for colour description

The HSI Colour Model (cont...)

The HSI model uses three measures to describe colours:

- Hue: A colour attribute that describes a pure colour (pure yellow, orange or red)
- Saturation: Gives a measure of how much a pure colour is diluted with white light
- Intensity: Brightness is nearly impossible to measure because it is so subjective. Instead we use intensity. Intensity is the same achromatic notion that we have seen in grey level images

HSI, Intensity \& RGB

Intensity can be extracted from RGB images which is not surprising if we stop to think about it

Remember the diagonal on the RGB colour cube that we saw previously ran from black to white

Now consider if we stand this cube on the black vertex and position the white vertex directly above it

HSI, Intensity \& RGB (cont...)

Now the intensity component of any colour can be determined by passing a plane perpendicular to the intenisty axis and containing the colour point
The intersection of the plane Black with the intensity axis gives us the intensity component of the colour

In a similar way we can extract the hue from the RGB colour cube
Consider a plane defined by the three points cyan, black and white
All points contained in this plane must have the same hue (cyan) as black and white cannot contribute hue information to a colour

The HSI Colour Model

Consider if we look straight down at the RGB cube as it was arranged previously
We would see a hexagonal
Green Yellow shape with each primary colour separated by 120° and secondary colours at 60° from the primaries So the HSI model is composed of a vertical

Cya intensity axis and the locus of colour points that lie on planes perpendicular to that axis

The HSI Colour Model (cont...)

To the right we see a hexagonal shape and an arbitrary colour point

- The hue is determined by an angle from a reference point, usually red

- The saturation is the distance from the origin to the point
- The intensity is determined by how far up the vertical intenisty axis this hexagonal plane sits (not apparent from this diagram

The HSI Colour Model (cont...)

Because the only important things are the angle and the length of the saturation vector this plane is also often represented as a circle or a triangle

HSI Model Examples

HSI Model Examples

Converting From RGB To HSI

Given a colour as R, G, and B its H, S, and I values are calculated as follows:

$$
\begin{aligned}
& H=\left\{\begin{array}{ll}
\theta & \text { if } B \leq G \\
360-\theta & \text { if } B>G
\end{array} \quad \theta=\cos ^{-1}\left\{\frac{\frac{1}{2}[(R-G)+(R-B)]}{\left[(R-G)^{2}+(R-B)(G-B)\right]^{\frac{1}{2}}}\right\}\right. \\
& S=1-\frac{3}{(R+G+B)}[\min (R, G, B)] \quad I=\frac{1}{3}(R+G+B)
\end{aligned}
$$

Converting From HSI To RGB

Given a colour as H, S, and I it's R, G, and B values are calculated as follows:

- RG sector $\left(0<=H<120^{\circ}\right)$

$$
R=I\left[1+\frac{S \cos H}{\cos (60-H)}\right] \quad G=3 I-(R+B) \quad B=I(1-S)
$$

$-\operatorname{GB} \operatorname{sector}\left(120^{\circ}<=H<240^{\circ}\right)$

$$
R=I(1-S) \quad G=I\left[1+\frac{S \cos (H-120)}{\cos (H-60)}\right] \quad B=3 I-(R+G)
$$

Converting From HSI To RGB (cont...)

- BR sector $\left(240^{\circ}<=H<=360^{\circ}\right)$

$$
R=3 I-(G+B) \quad G=I(1-S) \quad B=I\left[1+\frac{S \cos (H-240)}{\cos (H-180)}\right]
$$

HSI \& RGB

H, S, and I Components of RGB Colour Cube

Manipulating Images In The HSI Model

In order to manipulate an image under the HIS model we:

- First convert it from RGB to HIS
- Perform our manipulations under HSI
- Finally convert the image back from HSI to RGB

RGB -> HSI -> RGB (cont...)

Hue

Saturation

Intensity

Pseudocolour Image Processing

Pseudocolour (also called false colour) image processing consists of assigning colours to grey values based on a specific criterion
The principle use of pseudocolour image processing is for human visualisation

- Humans can discern between thousands of colour shades and intensities, compared to only about two dozen or so shades of grey

Intensity slicing and colour coding is one of the simplest kinds of pseudocolour image processing
First we consider an image as a 3D function mapping spatial coordinates to intensities (that we can consider heights)
Now consider placing planes at certain levels parallel to the coordinate plane If a value is one side of such a plane it is rendered in one colour, and a different colour if on the other side

Pseudocolour Image Processing Intensity Slicing (cont...)

Pseudocolour Image Processing Intensity Slicing (cont...)

In general intensity slicing can be summarised as:

- Let [0, L-l] represent the grey scale
- Let I_{0} represent black $\left[f(x, y)=0\right.$] and let l_{L-1} represent white [$f(x, y)=L-l]$
- Suppose P planes perpendicular to the intensity axis are defined at levels $l_{1}, l_{2}, \ldots, l_{p}$
- Assuming that $0<P<L-1$ then the P planes partition the grey scale into $P+1$ intervals V_{1}, V_{2}, \ldots, V_{P+1}

Pseudocolour Image Processing Intensity Slicing (cont...)

- Grey level colour assignments can then be made according to the relation:

$$
f(x, y)=c_{k} \quad \text { if } f(x, y) \in V_{k}
$$

- where $c k$ is the colour associated with the $k^{\text {th }}$ intensity level V_{k} defined by the partitioning planes at $l=k-l$ and $l=k$

RGB -> HSI -> RGB (cont...)

RGB -> HSI -> RGB (cont...)

